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A simple, algebraic funct ion is derived t o  represent the reaction profi le o f  a concerted (one-step) reaction: E = 
a x 4  t bx,' - (4a t 3b)x2/2, where I is the reaction coordinate. I t  is shown t h a t  th is  funct ion is in accord w i t h  the 
Hammond postulate and the Polany i  principle. I t  is used t o  evaluate the magnitude of the pressure-induced shifts 
o f  the transit ion state predicted by Wal l ing several years ago, and t o  question the va l id i ty  o f  a recent claim of  the 
experimental veri f icat ion o f  th is  effect. Fur ther  examination of th is  pressure effect leads t o  addit ional possibilities; 
among these are the vanishing of activation energies, the  creation of certain new intermediates, and the conversion 
o f  degenerate sets o f  rap id ly  equi l ibrat ing structures i n t o  resonance hybrids. 

The reaction profile showing how the energy of reacting 
molecules varies as they traverse the reaction coordinate has 
become a popular pedagogical device. The reason for this is 
that by means of it, one can conveniently illustrate a multitude 
of mechanistic phenomena. Concerted vs. stepwise reactions, 
intermediates vs. transition states, consecutive vs. competing 
reactions, early vs. late transition states, reversible vs. irre- 
versible reactions, all these can be instantly indicated by 
means of the familiar curves one finds wherever mechanisti- 
cally inclined chemists communicate with one another. 

On a recent occasion we wished to make a quantitative es- 
timate of pressure induced shifts of the transition state (vide 
infra), and discovered that none of the books exhibiting these 
curves records a function representing them.2 We wish to 
descr ibe  an empirical function here for a simple, single-step 
reaction. We note its utility by showing, for example, that it 
behaves in the fashion demanded by the Hammond postulate 
and the Polanyi principle, and finally employ it to make the 
estimate referred to above. 

The Function and Some of Its Features. We begin by 
noting that the general quartic 

E = a x 4  + b x s  + e x 2  + dx + e  

is the simplest algebraic function which can have the general 
features of the reaction profile: a maximum flanked by two 
minima. E is the potential energy, and we let x represent the 
"distance" along the reaction coordinate, expressed as a 
fraction of the total to be traversed between the initial and 
final states. If we specify that at  extreme values of x, E must 
be positive (a > 0), that the curve must pass through the origin 
(e = 01, that it must have a minimum there (d = 0) and a t  x 
= 1 [ c  = -(4a + 3b) /2] ,  we have as the basic function 

4a + 3b 
2 

E = ax4 + bx3  - - x 2  

Several possibilities are shown in Figure 1; these include re- 
actions with equilibrium constants less than, equal to, or 
greater than one (curves 11,111, and IV, respectively, if we ig- 
nore the difference between energy and free energy), as well 
as extreme cases I and V which are reactions without activa- 
tion energy. Beside the extrema a t  x = 0 and x = 1 (these 
points will be denoted by Y O  and XI, respectively), there is a 
third (at x*) which represents the transition state; it  is found 
by dividing 

dE - 4ax3 + 3bx2 - (4a + 3 b ) x  = 0 
dx 
_ -  
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I 1 I 

Figure 1. Various reaction profiles described by eq 1. 

Table I. Characteristics of Several Curves in Figure 1 

Curve I I11 v 
b la -% -2 -4s 
E1 + ?(3a 0 - %a 
E' + 'i@ '/I 6a 0 
X *  1 Y2 0 
x i n n .  'in; 1 'h f Y 6 4  0; %3 

Y2 0 
a b n  1 716 

Eq 1; E ax" - 9,ax;' + 2ax2 ax2(x - 1)' ax4 - %ax3 

0 
1 

a See text below. 

by x ( x  - l ) ,  which gives 

The corresponding activation energy E* is found by substi- 
tution of eq 2 into eq 1: 

Similarly, the reaction energy 
E1 = - ( a  +;b) 1 

(4 )  

Curves I and V are clearly the extreme cases a t  which the 
requirement of a vanishing first derivative a t  x o  and x1 still 
holds. Since in these two curves we also have a zero second 
derivative (at x , )  and XI, respectively), we can obtain the limits 
of b from 

-- - 1 2 ~ ~ '  + 6 b ~  - ( 4 ~  + 36) = 0 
d2E 
dx :? 

At X I ,  bla = -8; at xo,  bla = -$$. The pertinent data for 
curves I and V as well as those for the special case of El  = 0 
(curve 111) can now rapidly be deduced; they are summarized 
in Table I. I t  may be noted that since a is positive, b is nega- 
tive. The more common types I1 and IV of course have inter- 
mediate values for bla; once these constants have been chosen 
one can rapidly determine the corresponding function (from 
eq l), El  (from eq 4), E* (from eq 3), and x* (from eq 2). The 
reverse process of finding values of a and b appropriate for 
certain values of E l ,  E*, and x* is also possible, but if E* is 
one of the two data specified, the complexity of eq 3 makes this 
process somewhat cumbersome. 

x - c  

Figure 2. Reaction profiles of two displacement reactions XR + Y 
(Y') according to Polanyi et  al. (ref 6 and 7 ) .  

Applications. 1. The Hammond Postulate. This rule was 
recently discussed by F a r c a ~ i u . ~  The original statement by 
Hammond4 is that if two states occurring consecutively during 
a reaction process have similar energies, they will have similar 
structures; but most chemists are probably more familiar with 
the corollary due to Melander,5 who essentially derived the 
statement that for a given type of reaction, increased ex- 
othermicities imply earlier transition states. For our present 
purpose, we consider the energy of the starting material zero 
and relate the structure of the transition state x *  to E* and 
El .  From Figure 1 and Table I it is clear that the Hammond 
postulate is obeyed in the extremes; we now examine whether 
it applies a t  any intermediate value of x * .  We wish to show 
that for any given value of E*, x *  increases as El increases; 
in other words 

Elimination of bla between eq 2-4 leads to 

(1 - 2x*) 1 3 

(x*-2) (2) 

lE* (x*3(x*  - 2)]' - - 
x*3(x*  - 2)(-2) - (1 - 2 ~ * ) ( 4 ~ * "  - 6 ~ * ~ )  

which is clearly positive since E* > 0. 
2. The Polanyi Principle. Horiuti and Polanyi6 considered 

reaction profiles as the resultants of attractive and repulsive 
potential energy curves (see Figure 2). Their analysis, initially 
applied to ionic displacement reactions, clearly implied a 
correlation between E* and El .  In time the generalized 
proposition that in a series of closely related reactions greater 
product stability meant proportionately faster reaction and 
vice versa became one of the cornerstones of mechanistic 
chemistry: 

E* = aE1 

or 

-=a  
dE* 
dE 1 
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t-0.2 PT 
-If343 

Figure 3. Pressure induced transition state progression. 

Polanyi et  a1.6 suggested that the proportionality factor a is 
about Yz, but Evanss later concluded that it could be as low as 
%. A relation of this sort can be derived from eq 1. Thus, if we 
eliminate b/a between eq 3 and 4, we obtain 

E* 5 9 El - = -1 + 2 (? + 1;) 1- - - (- + 1) 
a 2 2 a  

Then the derivative 

a, = (Z)  = 5 - 18 (?+ 1) +: (:+ 1)’ 

15 81 b 2 27 b 3 

IZ 16 ( a )  32 ( a )  
= 5 + g - + -  - +-  - 

Similarly 

Both factors reach a maximum of +1 for curve I and a mini- 
mum of 0 for curve V. Throughout the intermediate region, 
a is positive, as can be shown, for example, from 

81 b 81 b 2 -- da, - 91 + - (-) + - (-) = 0 
d(b/a) 8 a  3 2 a  

which has roots of (b la)  = -?+? and -s/3 (note Table I). For 
curve 111, cy, has the value I$, and it is equal to for b/a = 

3. Pressure Induced Shifts in the Transition State. 
Since the absolute value of the activation volume is rarely 
more than 30 cm3/mol or so and since 1 cm3 atm is only 2.4 X 

kcal, the p A V *  term is a vanishingly small part of AH* 
or AG* in reactions carried out under room conditions; how- 
ever, a t  high pressures (e.g., 10 kbar = lo4 atm) the work term 
is no longer negligible. As was pointed out by Walling in 19631° 
and supported by Hamannll in 1964, this may in fact have the 
effect of shifting the position of the transition state, as is 
shown in Figure 3 (curve B). This illustrates a reaction with 
a positive activation volume and reaction volume carried out 
under high pressure; it is subject to apAV term of increasing 

- 1 .8493.9 

magnitude as the reaction coordinate is traversed. This ad- 
ditional term raises the entire curve above where it would be 
a t  zero pressure (A), and the maximum shifts somewhat to 
larger x .  Thus, pressure in such a case has the effect of 
bringing about a later transition state. 

I t  is perhaps unfortunate that this proposal came as a part 
of polemics centered on the question of whether the thermo- 
dynamic compressibility (-1/V)(dV/dp)T of a transition state 
might be adequately expressed by the Tait equation or not.‘’ 
Walling’s proposal led to such terms as “abnormal compres- 
sibility”1° and “negative compressibility”’ of transition 
states; furthermore, in their critical assessment of the mag- 
nitude of the effect, Benson and Berson13 used a model in- 
volving the compression of a very weak bond, which may 
suggest that shifts of the transition state would necessarily be 
in the direction of a shorter bond. I t  seems preferable to the 
present authors to refer to Walling’s phenomenon as a pres- 
sure induced progression of the transition state. The opposite 
phenomenon, occurring in cases of a monotonic volume de- 
crease, would be retrogression of the transition state. 

In the following discussion, the activation volume AV* = 
V* - Vo, the reaction volume AV1 = V1 - Vo, and AV = V,  
- Vo. Equation 1 allows us to make an estimate of the mag- 
nitude of the effect. If we assume for the moment that the 
work term obeys 

w = pAV = sx 

then the enthalpy becomes 

and the slope is 

= 4ax3 + 3bx2 - (4a + 3b)x + s 
dx 

The three roots of this equation will ordinarily be real, and can 
rapidly be evaluated by the trigonometric method of solving 
cubics. One of them represents the new value of x * ,  which will 
be denoted by px *. The others give the new values of pxo and 
px  1. 

The solution of a cubic is too complicated to permit the 
writing of a general expression for the exact shift of x *  as a 
function of a, b, and s ;  however, a few numerical examples may 
suffice. For the special case that El = 0 a t  atmospheric pres- 
sure, for instance, if we have E* = 22.5 kcal/mol, so that a = 
360 kcal/moll, b = -720 kcal/mol, and AVl = 45 cm3/mol 
(such values may be encountered in reverse Diels-Alder re- 
actions, for example14), then the value of s at  p = 10 kbar is 
10.75 kcal/mol and the points of minimum and maximum 
enthalpy are the roots of 

4 ~ ”  - 6 ~ ’  + 2~ + 0.03 = 0 

The solutions are P X O  = -0.0144, p x *  = 0.5301, and pxI = 
0.9843. Thus a shift of 100[(0.5301 + 0.0144)/(0.9843 + 0.0144) 
- 0.5000]/0.5000 = 9.0% would occur in the location of the 
transition state relative to the initial state. A slightly less ac- 
curate but more convenient procedure is to make use of a 
Taylor series expansion of the enthalpy: 

d H  1 d2H 1 d:IH 
dx 2 dx 6 dx.’ 

H-H*=-~X+--(~X)~+--(~X):(----+S~~ 

where 6 x  = x - x * .  Near the transition state, the first term 
vanishes, as does the derivative 

Hence 
- P  

6x = 
12ax2 + 6bx - 4a - 36 
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For x = lh, b/a = -2, one finds 

6x = s /a  = 0.0300 

so that x*  shifts to p r *  = 0.5300. This value and the new 
values of p x o  and PI 1 agree to three decimal places with those 
obtained by exact solution of the cubic equation. 

The use of w = sx is of course arbitrary. An especially simple 
solution is available if we replace it by a pressure contribu- 
tion 

J .  Org. Chem., Vol. 42, No. 2, 1977 341 

This curve-like the reaction profile itself-has been designed 
to have zero slope a t  x o  and X I ,  so that it will produce no 
changes in x at either extremity (see Figure 4). The constant 
r is defined by H1 = s = r(1 - 3/2), and so we may rewrite the 
pressure contribution as 

w = -2sx3 + 3sx2 (5) 

Now the enthalpy 

has a slope 
d H  
d r  
- = 4ax3 + (36 - 6.9)~'  + (6s - 4~ - 3b)x 

which equals zero at  XO, XI, and a t  

The shift in x *  therefore now simply equals 3s/2a, = 0.0450, 
or 9.090. 

However the shifts are evaluated, they are not very large. 
For instance, if we examine the effect of using El = -7.2 
kcal/mol (a = 414 and b = -813.6 kcal/mol), the shift in x *  
is now from 0.474 to 0.500; if El is taken as -22.5 kcal/mol (a  
= 522 and b = -999 kcal/mol), then x *  changes from 0.435 to 
0.456. Very large shifts can of course be designed by assuming 
ever larger values of pAV* and pAV1; however, it  should be 
remembered that volume differences are not independent of 
pressure, and they invariably become smaller as the pressure 
is raised. I t  is quite common for lAV*l to change, say, from 
30 cm3/mol at atmospheric pressure to 10 cm3/mol a t  5 kbar, 
and even less than that a t  still higher pressures. The as- 
sumption made above (of AV1 = 2AV* = 45 cm3/mol at 10 
kbar)  is already so generous as to strain credulity, and still 
larger estimates have simply no counterpart in reality (except 
for some reactions of macromolecules). Further controlled 
increases in pressure are eventually ruled out for various ex- 
perimental reasons. 

One claim for a shift of this sort has been made to date. 
Fujii15 has mentioned it in a recent paper describing a study 
of the Orton rearrangement in water containing up to 16 wt 
% ethanol: 

H' 
The rate-determining step is 

t 
/ 

Figure 4. Equation 5: The straight line w = sn is given for comparison; 
the integrated areas under the curves from x o  and X I  are the same. 

The author used the relation between In k and the dielectric 
constant D (Scatchard's equation)16 to calculate r N +  ...c I-; the 
necessary variation in D was achieved by applying changes in 
solvent composition. Since the change in D with pressure for 
these media is unknown, the Owen-Brinkley equation" was 
used to calculate it. The result was a change in r from 2.6 to 
3.6 8, over a range of a mere 2 kbar, and this result was con- 
sidered to confirm the operation of the Walling effect. How- 
ever, the change seems far too large, especially if the modest 
pressure range and activation volume (+5 cm:j/mol) are con- 
sidered; furthermore, since the ionic and van der Waals radii 
of chlorine are 1.80 8,, and the covalent radii of chlorine and 
nitrogen are about 1.0 and 0.7 A, respectively, it is hard to see 
how the distance between the ionic centers could be much less 
than 3.7-4.7 8, a t  any stage, unless we assume that the rate- 
limiting step is a front-side displacement (at chlorine by 
chloride). It seems likely that the observation is a manifesta- 
tion of the special solvent effects that are knownls to operate 
in highly aqueous organic media, and which were not con- 
sidered. As may be obvious from the discussion here, the 
Walling effect is going to be small even under the most fa- 
vorable circumstances, and hence difficult to demonstrate; 
perhaps pressure sensitivity of the chlorine (35/37) isotope 
effect will be the method of choice. 

An interesting phenomenon may be encountered if reac- 
tions of low E* and large, negative AV* are studied at  high 
pressures. We illustrate this by means of the symmetrical 
curve 111. At the inflection points, the energy is (%&, and the 
slope reaches maxima there o f f  (l&av% Since E* is (I/16)a, 
one can readily show that the transition state vanishes alto- 
gether if E* < - (Y&)sd .  Thus, if AV* = -22.5 cm:3/mol and 
AV1 = -45 cm"/mol a t  10 kbar, in a reaction of activation 
energy less than 3.5 kcal/mol a t  atmospheric pressure, the 
starting material would pass over into product without having 
to pass a barrier at all a t  10 kbar (see curve C of Figure 3). A 
phenomenon of this sort has been alluded to by Libby.lg 

Finally, it may be noted that it is not necessary that A V  vary 
monotonically along the reaction coordinates; it  may exhibit 
extremum behavior as does E itself.l0 Displacement reactions 
involving no net change of charge, and Diels-Alder reactions 
involving secondary orbital interactions, are examples of re- 
actions in which AV* is more negative than AV1. In such re- 
actions, as Figure 5 demonstrates, the addition of E and p AV 
may lead to a new minimum. In fact, by working at  high 
pressure, we would have stabilized a transition state to the 
point that it is a reactive intermediate instead. In the dis- 
placement example, this might be a molecule containing a 
pentacovalent carbon atom, or an ion triplet; in the Diels- 
Alder reaction, a diradical would be indicated. A particularly 
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Figure 5. T h e  pressure induced creation of a n  unstable in termedi -  
ate. 

interesting case would be the application of very high pres- 
sures to rapidly equilibrating valence isomers such as semi- 
bullvalene.zO The activation energy for the degenerate isom- 
erization is only a few kcal/mol; the [3,3] sigmatropic shift is 
characterized by a negative activation volume and a minimum 
in the pressure profile.:!l Conversion into a pressure stabilized 
resonance hybrid (sought by means of substituents in recent 
yearsz2) is thus conceivable. 
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